
Student research proposals REPLAN

Computing the navigation function for the sphere world
Idea
The navigation function φ is the composition of several simpler functions:

φ =

(
γkd

γkd + β

) 1
k

=
γd(

γkd + β
) 1

k

(1)

where γd : F 7→ [0,∞) and β : F 7→ [0,∞) are given by

attractive component : γd = ‖q − qd‖2, (2a)

repulsive components : β =

M∏
i=0

βi, with
{
β0 = ρ20 − ‖q‖2,
βi = ‖q − qi‖2 − ρ2i , i = 1, . . . ,M,

(2b)

with qi the obstacles’ centers and ρi their radii. ρ0 is the radius of the sphere world and qd is the
target destination.

The navigation function describes a surface that has a single minimum (at the destination) so any
agent starting from a feasible point will converge to the destination while simultaneously avoiding the
obstacles and the boundary of the world. Trajectories are obtained by computing the gradient at the

−10 −5 0 5 10
−10

−5

0

5

10

x[m]

y[
m

]

(a) trajectories inside the sphere (b) sphere world with potential surface

Figure 1: Sphere world example

potential surface. For example, single integrator dynamics may be given by

q̇(t) = −∇φ(q(t)). (3)

Objectives
There are multiple objectives that may be solved together or in parallel:

O1) Parameter k is given theoretically in [3, 4] but there is no library that actually implements the
necessary computations. It should be computed explicitly using CasADi [1] in both Matlab and
Python. [licență/dizertație]

Theory Implementation Tools

Matlab/Python with CasADi

1 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

O2) The same ideas may be extended to other families of sets: [licență/dizertație]

• star-shaped sets as in [3]

• elliptic/ovoidal sets as in [2]

• polyhedral sets (as collection of linear inequalities)

It would be interesting to implement the same algorithms as done for the classical sphere world
case.

Theory Implementation Tools

Python and/or ROS2+Gazebo

O3) For a given navigation function implement the control action in either simulation (ROS2 +
Gazebo) or experiment (using TurtleBot Burger). [licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

People

• Florin Stoican • Theodor Nicu • Daniel Ioan

Relevant references
[1] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. “CasADi: a software framework

for nonlinear optimization and optimal control”. In: Mathematical Programming Computation
11 (2019), pp. 1–36.

[2] S. Paternain, D. E. Koditschek, and A. Ribeiro. “Navigation functions for convex potentials
in a space with convex obstacles”. In: IEEE Transactions on Automatic Control 63.9 (2017),
pp. 2944–2959.

[3] D. E. Koditschek. “The control of natural motion in mechanical systems”. In: (1991).
[4] D. E. Koditschek and E. Rimon. “Robot navigation functions on manifolds with boundary”. In:

Advances in applied mathematics 11.4 (1990), pp. 412–442.

2 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Computation alternative for MPI sets for real-time applications
Idea
To ensure the stability of the generic MPC control algorithm (1), we need to consider a terminal set
Ω (1d), that is Maximal Positive Invariant (MPI).

min
ū0,...,ūN−1

N−1∑
k=0

x̄⊤k Qx̄k + ū⊤k Rūk + x̄⊤NPx̄N (1a)

s.t. x̄k+1 = Ax̄k +Būk, ∀k = 0, . . . , N − 1, (1b)
ūk ∈ U , x̄k+1 ∈ X , ∀k = 0, . . . , N − 1, (1c)
x̄N ∈ Ω. (1d)

The main focus of this proposal is to develop a Python toolbox to efficiently compute this
terminal MPI set, both for simulations and experimental applications.

For a given LTI dynamics xk+1 = A◦xk and a set X ⊂ Rn which bounds the state, we have the
following standard recurrence for MPI set construction [3]:

Ω0 = X , Ωk+1 = A−1
◦ Ωk ∩ X . (2)

By construction we have Ωk+1 ⊆ Ωk, so to determine the MPI it suffices to check either one of:

Ωk ⊆ Ωk+1 (3) Ωk ⊆ A
−(k+1)
◦ X , (4) X ⊆ A

−(k+1)
◦ X . (5)

To this end, we need to employ several standard notions from set-based control: like polyhedra [1]
and/or other particular classes of compact sets. An important aspect is how the representation of
these sets may affect the computation time, since all of the stop conditions from (3), (4), (5) will obtain
the same MPI set. For example, the most used representation is as bounded and fully-dimensional
polyhedra X ⊂ Rd. The general class of sets has a dual representation, with both a half-space form
X = {x ∈ Rd : a⊤i x ≤ bi, i = 1 . . . nh} as an intersection of linear inequalities and a convex sum of its
extreme points (i.e., its vertices) X = {x ∈ Rd : x =

∑nv
j=1 αjvj ,

∑nv
j=1 αj = 1, αj ≥ 0.

Figure 1: Halfspace (animation, requires Adobe)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x1

x
2

Figure 2: Vertex

Objectives
There are multiple objectives that can be solved sequentially or in parallel:

O1) There is no Python library that actually implements all the necessary computations. It should
be computed explicitly using CasADi [2] in Python. [practică/licență]

1 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Theory Implementation Tools

Python with CasADi

O2) Apply MPC with stability guarantees for the Crazyflie quadcopter in either simulation (ROS2
+ Gazebo) and/or experiment. [licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

O3) Apply MPC with stability guarantees for the TurtleBot Burger in either simulation (ROS2 +
Gazebo) and/or experiment. [licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

People

• Florin Stoican • Bogdan Gheorghe • Daniel Ioan

Relevant references
[1] K. Fukuda. “Polyhedral computation”. In: (2020). Publisher: Department of Mathematics, In-

stitute of Theoretical Computer Science ETH Zurich.
[2] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. “CasADi: a software framework

for nonlinear optimization and optimal control”. In: Mathematical Programming Computation
11 (2019), pp. 1–36.

[3] F. Blanchini and S. Miani. Set-theoretic methods in control. Vol. 78. Springer, 2008.

2 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Graph-based strategies for motion planning
Idea
Roughly speaking, in motion planning problems (especially, in obstacle and collision avoidance ones)
the challenging part consists in encoding the inherent discrete decisions. The most used approaches
in the literature are based on graphs [2]. Thus, those problematic discrete decision are translated to
the search of the shortest path between nodes in a graph.

For finding of the shortest path in a graph there exists in the literature various algorithms, but the
most influential ones are Dijkstra’s , Greedy or A⋆ search algorithms.

In the literature, there are two important graph-based algorithms1:

1. PRM (Probabilistic RoadMaps) [4], illustrated in 1a - a multiple-query approach in that it
determines the best path through the graph to answer queries after creating the roadmap, which
is a rich set of viable paths. Accordingly, if an environment’s awareness map is readily available,
the PRM is a helpful technique [3]. The PRM has many variations, each of which is a significant
development.

2. RRT (Rapidly-exploring Random Tree) [1] - more appropriate in situations where the
environment is unknown beforehand. This method builds the graph incrementally, stopping the
procedure when a sufficiently big collection of pathways free of collisions is reached. As a result, a
collision-free sample is connected to the neighboring nodes and added as a node to the graph. In
reality, the resulting graph is a tree. RRT is available in multiple variants as PRM. Some produce
just geometric paths that serve as reference trajectories for a lower level controller, while others
construct reachable paths while accounting for the equations of motion. Additionally, certain
variants are designed for dynamics that are unpredictable, complex, or unstable.

(a) Probabilistic Roadmap method
−15 −10 −5 0 5

−2

2

6

10

14

obstacles
corridor
piecewise linear path
MPC-computed trajectory

(b) graph-based method integrated in a MPC strategy

Figure 1: Graph-based approaches for motion planning

The main focus of this proposal is to develop a C++/Python toolbox to efficiently implement
this kind of methods, both for simulations and experimental applications.

As well, we plan to extend all this algorithms by incorporating the set theoretic notions right
from the stage of designing and constructing the graphs, to ease and to increase the efficiency of the
path/trajectory tracking strategies.

1The main difference between them is given by the method of constructing the graph.

1 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Objectives
There are multiple objectives that may be solved together or in parallel:

O1) Implement and compare a set of several variants of PRM methods [practică/licență]

Theory Implementation Tools

C++/Python

O2) Validation of an RRT-type technique through experimentation combined with a conventional
path tracking algorithm for the Crazyflie quadcopter or the TurtleBot Burger [licență]

Theory Implementation Tools

Python and/or ROS2+Gazebo

O3) For an a priori known environment implement, test and validate a PRM strategy for the Turtle-
Bot Burger, in either simulation and/or experiment [practică/licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

O4) For an a priori known environment compare in either simulation and/or experiment, a PRM
method with a potential field based strategy [5] [practică/licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

People

• Daniel Ioan

• Theodor Nicu

• Bogdan Gheorghe

• Andreea Udrea

• Florin Stoican

Relevant references
[1] A. Weiss, C. Danielson, K. Berntorp, I. Kolmanovsky, and S. D. Cairano. “Motion planning with

invariant set trees”. In: 2017 IEEE Conference on Control Technology and Applications (CCTA).
Aug. 2017, pp. 1625–1630.

[2] J.-C. Latombe. Robot motion planning. Vol. 124. Springer Science & Business Media, 2012.
[3] S. Karaman and E. Frazzoli. “Sampling-based algorithms for optimal motion planning”. en. In:

The International Journal of Robotics Research 30.7 (June 2011), pp. 846–894. issn: 0278-3649.
(Visited on 05/14/2018).

[4] D. Hsu, J.-C. Latombe, and H. Kurniawati. “On the probabilistic foundations of probabilistic
roadmap planning”. In: Robotics Research. Springer, 2007, pp. 83–97.

[5] D. E. Koditschek and E. Rimon. “Robot navigation functions on manifolds with boundary”. In:
Advances in applied mathematics 11.4 (1990), pp. 412–442.

2 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Simultaneous Localization and Mapping (SLAM)
Idea
The ability of a mobile robot to navigate through and interact with its surroundings is a critical
requirement for a wide range of applications, from autonomous vehicles and drones to rescue robots and
household assistants. At the heart of this capability lies the Simultaneous Localization and Mapping
(SLAM) problem, which involves a robot concurrently building a map of its unknown environment
while also estimating its own location within that map[3].

SLAM has been a long-standing challenge in robotics, with significant progress made over the past
few decades. The core idea behind SLAM is to use a robot’s sensors, such as cameras, laser scanners, or
inertial measurement units, to collect data about the environment and then use this data to construct
a map and determine the robot’s position within that map. One of the key challenges in SLAM is
the need to maintain and update the map over time, especially in dynamic environments where the
surroundings may change[3]. Another challenge is the need to disambiguate locations, particularly in
environments with similar visual features, such as a warehouse with long, featureless aisles.

To address these challenges, researchers have explored a variety of SLAM approaches, including
metric-based methods that aim to build a precise geometric map of the environment, and more recent
techniques that incorporate semantic information and unsupervised learning to improve robustness
and accuracy[2]. Despite these advances, SLAM remains an active area of research, with ongoing
efforts to improve the scalability, robustness, and versatility of SLAM systems to meet the growing
demands of modern robotics applications.

The main focus of this proposal is to develop, implement and compare different SLAM strategies
that can be exploited in both simulations and experimental applications.

As a starting point we suggest to investigate two standard techniques used in SLAM. The first
is based on the use of a(n extended) Kalman filter[5](SLAM problem is formulated as a nonlinear
state estimation problem, where the robot’s pose and the positions of landmarks or features in the
environment are the unknown states to be estimated. EKF provides a recursive solution, allowing the
robot to update its belief about its state as new sensor measurements become available), while the
second exploit the well-known Interval Analysis methodology[6] (using a Set Inversion Via Interval
Analysis (SIVIA) approach and an environment vectorization or combining stochastic and set mem-
bership tools). Both techniques make use of data collected by the LIDAR (a remote sensing method
-Light Detection and Ranging available on TurtleBot Burger - Figure 1)

(a) Data collected by the lidar (b) Localization uncertainties[4] (c) TurtleBot 3 Burger

Figure 1: SLAM Approaches and experimental platform

1 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Objectives
There are multiple objectives that may be solved together or in parallel:

O1) For a given partially known environment implement an EKF-based SLAM strategy [prac-
tică/licență]

Theory Implementation Tools

Python

O2) For a given partially known environment implement an Interval-based SLAM strategy using
CODAC[1] [practică/licență]

Theory Implementation Tools

Python with CODAC

O3) Experimental validation of an EKF-based SLAM strategy for the TurtleBot Burger, in either
simulation and/or experiment [licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

O4) Experimental validation of an Interval-based SLAM strategy for the TurtleBot Burger, in either
simulation and/or experiment [licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

People

• Daniel Ioan • Florin Stoican • Bogdan Gheorghe

Relevant references
[1] S. Rohou, B. Desrochers, and F. Le Bars. “The Codac Library”. In: Acta Cybernetica. Special

Issue of SWIM 2022 (Mar. 2024). doi: 10.14232/actacyb.302772. url: https://cyber.bibl.
u-szeged.hu/index.php/actcybern/article/view/4388.

[2] O. Çatal, T. Verbelen, T. Van de Maele, B. Dhoedt, and A. Safron. “Robot navigation as
hierarchical active inference”. In: Neural Networks 142 (2021), pp. 192–204.

[3] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny. “Visual and Visual-Inertial SLAM:
State of the Art, Classification, and Experimental Benchmarking”. In: Journal of Sensors 2021.1
(2021), p. 2054828.

[4] Z. Wang and A. Lambert. “A Low-Cost Consistent Vehicle Localization Based on Interval Con-
straint Propagation”. In: Journal of Advanced Transportation 2018.1 (2018), p. 2713729.

[5] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. “Analysis and improvement of the consistency
of extended Kalman filter based SLAM”. In: 2008 IEEE International Conference on Robotics
and Automation. IEEE. 2008, pp. 473–479.

[6] L. Jaulin, M. Kieffer, O. Didrit, et al. Interval analysis. Springer, 2001.

2 out of 2 last updated at 16/09/2024, 15:09

https://doi.org/10.14232/actacyb.302772
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4388
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4388


Student research proposals REPLAN

Formation control for a team of robots/drones
Idea
The field of multiagent systems has seen a growing interest in recent years, with researchers exploring
various aspects of coordinating and controlling the behavior of multiple autonomous agents. One
critical area within this domain is formation control, where the goal is to enable a group of agents to
maintain a specific geometric arrangement or shape as they navigate their environment.

Formation control in multiagent systems has applications in diverse domains, such as robotics,
aerospace, and transportation. The ability to coordinate the motion of a group of agents while
preserving a desired formation can be useful in tasks like search and rescue operations, environmental
monitoring, and collaborative manipulation of objects. Researchers have explored various approaches
to formation control, drawing inspiration from game theory and reinforcement learning techniques.

Depending on the sensing capabilities and interactions between agents [2], the formation control
algorithms can by classified as:

• Position-based control: agents sense their own positions with respect to a global coordinate sys-
tem (no agent interaction). This is efficient, but the neglect of interaction might have undesired
effects (i.e., collisions and crash).

• Displacement-based control: agents actively control displacements of their neighboring agents
to achieve the desired formation. This is advantageous in terms of the sensing capability, but it
is more expensive (computational and/or financially)

• Distance-based control: inter-agent distances are actively controlled to achieve the desired for-
mation. Here, we have a trade-off between sensing capability and interaction.

The main focus of this proposal is to create a Python toolbox for controlling a formation of
robots or drones.

(a) Formation of drones (b) Formation of nano-drones Crazyflie 2.0

Figure 1: Graph-based approaches for motion planning

Example formation control
Here we have the single integrator case, where we control the distance between two agents (i.e.,

drones/robots). The state of the system is given by the position of the agent, and the input is the
velocity of the agents.

• Dynamics:
ṗi = ui, i = 1, . . . , N, (1)

where pi is the state of the system, and ui is the input of the system.

1 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

• Control law:
ui = kp

∑
j∈Ni

ωij

(
pj − pi − p⋆j + p⋆i

)
, (2)

where p⋆i is the reference position of the agent.
Formation requirement: pi − pj → p⋆i − p⋆j .

Objectives
There are multiple objectives that may be solved together or in parallel:

O1) Implement formation control algorithms in the simulation. [licență/dizertație]

Theory Implementation Tools

Matlab/Python and/or ROS2+Gazebo

O2) Use the formation control algorithms to follow a given trajectory for each robot or for the entire
formation. [licență/dizertație]

Theory Implementation Tools

Python and/or ROS2+Gazebo

O3) Study the stability properties of different control laws employed in formation control [2] [li-
cență/dizertație]

Theory Implementation Tools

Matlab/Python with CasADi

O4) Implement the MIP-algorithms in [1] for a group of minimum 3 agents. hfill [licență/dizertație]

Theory Implementation Tools

Matlab/Python with CasADi

O5) Implement a potential field algorithms for a group of minimum 3 agents. [licență/dizertație]

Theory Implementation Tools

Matlab/Python with CasADi

People

• Florin Stoican • Daniel Ioan • Bogdan Gheorghe

Relevant references
[1] I. Prodan, F. Stoican, S. Olaru, and S.-I. Niculescu. Mixed-integer representations in control

design: Mathematical foundations and applications. Springer, 2016.
[2] K.-K. Oh, M.-C. Park, and H.-S. Ahn. “A survey of multi-agent formation control”. In: Auto-

matica 53 (2015), pp. 424–440.

2 out of 2 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

Robot simulator review
Idea
The idea of this proposal is to do a hands-on survey on different robot simulators. We are mainly
interested in finding which robot description language is compatible with the most commonly used
robot simulators in research/industry. Another interest result would be finding if a sensor fusion model
can be imported in multiple robotic simulators.

The robot simulators that we are interested in:
• Isaac Sim: is a robot simulator developed by Nvidia. It’s specific advantage comes from the

direct access to the GPU resources, make it efficient for intensive simulations. See: Pegasus
Simulator based on Isaac Sim.
Documentation: https://docs.omniverse.nvidia.com/isaacsim/latest/index.html

• Webots: is an open-source robot simulator that has multiple interesting tools, and allows pro-
gramming in multiple languages.
Documentation: https://cyberbotics.com/doc/guide/foreword

• OpenAI Gym - free Python toolkit
Documentation: https://github.com/Farama-Foundation/Gymnasium

• Coppelia Robotics: allows for fast robotic implementation for simulation.
Documentation: https://www.coppeliarobotics.com/

• Other simulators: jMAVSim, RotorS Gazebo, PX4-SITL, AirSim, Flightmare, MuJoCo, etc...

Objectives
O1) Develop a robot with it’s kinematics, and simulate in all the simulators [practică/licență]

Theory Implementation Tools

Python/C++/XML

O2) Test the sensor fusion capabilities inter platforms [licență/dizertație]

Theory Implementation Tools

Robot simulators

People

• Florin Stoican • Bogdan Gheorghe • Daniel Ioan

1 out of 1 last updated at 16/09/2024, 15:09

https://docs.omniverse.nvidia.com/isaacsim/latest/index.html
https://cyberbotics.com/doc/guide/foreword
https://github.com/Farama-Foundation/Gymnasium
https://www.coppeliarobotics.com/


Student research proposals REPLAN

The point location problem in the explicit MPC implementation
Idea
Consider the linear time-invariant (LTI) discrete system:

xk+1 = Axk +Buk, yk = Cxk.

Then the typical (quadratic cost and linear constraints) MPC problem is:

u⋆
N = arg min

uN

x⊤NSxN +
N−1∑
k=0

(
x⊤k Qxk + u⊤k Ruk

)
,

s.t. xk+1 = Axk +Buk ,

yk = Cxk ,

xk ∈ X , uk ∈ U , yk ∈ Y ,

xN ∈ Xf .

quadratic cost

state equation
output equation
state, input, output constraints
terminal state constraint

The equivalent multi-parametric quadratic program (mp-QP):

u⋆
N (x0) = arg min

uN

1

2
u⊤
N Q̃uN + x0

⊤H̃uN

s.t. AuN ≤ b+ Ex0,

The Explicit MPC allows to solve the optimization problem off-line:
• The optimal control is an “explicit” function of the state → the on-line operations become simple

function evaluations.

• Usually, the control law is a piecewise affine (PWA) function → the controller is stored in a
lookup table of affine gains.

• Since both the control law and the cost surface are known (piecewise affine and, respectively,
quadratic), stability and performance can be analyzed offline.

−2.5 −1.5 −0.5 0.5 1.5 2.5
−2.5

−1.5

−0.5

0.5

1.5

2.5

x1
0

x
2 0

(a) critical regions
−2

−1

0

1

2

−2−1.5
−1−0.5

00.5
11.5

2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x10

x20

u
0

(b) piecewise control action (c) piecewise cost surface

Figure 1: Illustration for the explicit MPC problem (the 2D case)

Objectives
Assuming that we have already computed the list of critical regions and their associated control laws,
we are interested in efficient ways to locate the currently active region. This proves surprisingly difficult
when there are many critical regions to be searcher (sequential search may be too slow). Thus, we
wish to test several methods.

O1) Tree-based approaches [practică/licență]

1 out of 3 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

• [10] interprets a PWA function as a weighted power diagram (a generalization of the Voronoi
diagram). The Voroi diagram center closest to the current point is identified in a logarithmic
time.

• [7] chooses directions and lists all regions which have a non-empty projection to construct
a decision tree; choosing good direction is posed as a mixed integer problem in [8]

• [4] combines an orthogonal (axis-orthogonal separation hyperplanes) truncated binary search
tree (OTBST) with a lattice representation of the PWA formulation: each node contains a
subset of CRs from which the active one is selected by running a lattice formula

• [5] uses a hash table to speed up the point location: a variable-width grid is superposed
over the partition, and to which cell is attached a list of CRs

• [6] expands the binary tree description to a multiway m-tree: search operations may be
implemented in parallel

• [3] stores the connectivity graph obtained in the construction phase, enumerates the cur-
rent’s CR half-spaces which do not contain x0 and flips them iteratively to find the new
CR

• [2] proposes a hybrid data-structure, composed from a k-d tree (GKDT) which is composed
from a k-dimensional tree, hash table and binary search tree (BST) to divide the search
tree into multiple sub-trees and traverse them via a hash function on each level.

Theory Implementation Tools

Matlab/Python/C++

O2) Lattice-based approaches [practică/licență]
[9], for the case of a scalar input, gives a lattice formulation:

• consider the PWA function

p(x) = ℓ(x, θi) =
[
x⊤ 1

]⊤
θi, ∀x ∈ Ri

• then there exists the equivalent formulation (disjunctive form)

P (x,Θ,Ψ) = min
1≤i≤M

{
max

1≤j≤M,Ψij=1
ℓ(x, θj)

}

where Θ =
[
θ1 . . . θM

]⊤ and Ψij =

{
1, if ℓ(x, θi) ≥ ℓ(x, θj)

0, otherwise

• retrieving the affine law is now simply a series of min/max operations; various simplifications
are discussed

• a similar, conjunctive form (max-min), exists [1]

Theory Implementation Tools

Matlab/Python/C++

People

2 out of 3 last updated at 16/09/2024, 15:09



Student research proposals REPLAN

• Florin Stoican • Ștefan Mihai

Relevant references
[1] J. Xu and Y. Lou. “Error-free approximation of explicit linear MPC through lattice piecewise

affine expression”. In: (Oct. 1, 2021). url: https://arxiv.org/abs/2110.00201v2 (visited on
12/14/2021).

[2] X. Xiu and J. Zhang. “Grid kd tree approach for point location in polyhedral data sets–
application to explicit MPC”. In: International Journal of Control 93.4 (2020). Publisher: Taylor
& Francis, pp. 872–880.

[3] M. Herceg, S. Mariéthoz, and M. Morari. “Evaluation of piecewise affine control law via graph
traversal”. In: 2013 European control conference (ECC). IEEE, 2013, pp. 3083–3088.

[4] F. Bayat, T. A. Johansen, and A. A. Jalali. “Flexible piecewise function evaluation methods
based on truncated binary search trees and lattice representation in explicit MPC”. In: IEEE
Transactions on Control Systems Technology 20.3 (2011). Publisher: IEEE, pp. 632–640.

[5] F. Bayat, T. A. Johansen, and A. A. Jalali. “Using hash tables to manage the time-storage
complexity in a point location problem: Application to explicit model predictive control”. In:
Automatica 47.3 (2011). Publisher: Elsevier, pp. 571–577.

[6] M. Mönnigmann and M. Kastsian. “Fast explicit MPC with multiway trees”. In: IFAC Proceed-
ings Volumes. 18th IFAC World Congress 44.1 (Jan. 1, 2011), pp. 1356–1361. issn: 1474-6670.
doi: 10 . 3182 / 20110828 - 6 - IT - 1002 . 00686. url: https : / / www . sciencedirect . com /
science/article/pii/S1474667016437985 (visited on 01/17/2023).

[7] A. N. Fuchs, D. Axehill, and M. Morari. “On the choice of the linear decision functions for
point location in polytopic data sets-application to explicit MPC”. In: 49th IEEE Conference on
Decision and Control (CDC). IEEE, 2010, pp. 5283–5288.

[8] A. N. Fuchs, C. N. Jones, and M. Morari. “Optimized decision trees for point location in poly-
topic data sets-application to explicit MPC”. In: American Control Conference (ACC), 2010.
00020. IEEE, 2010, pp. 5507–5512. url: http://ieeexplore.ieee.org/abstract/document/
5530979/.

[9] C. Wen, X. Ma, and B. E. Ydstie. “Analytical expression of explicit MPC solution via lattice
piecewise-affine function”. In: Automatica 45.4 (2009). Publisher: Elsevier, pp. 910–917.

[10] C. N. Jones, P. Grieder, and S. V. Raković. “A logarithmic-time solution to the point location
problem for parametric linear programming”. In: Automatica 42.12 (2006). 00060, pp. 2215–2218.
url: http://www.sciencedirect.com/science/article/pii/S0005109806003074.

3 out of 3 last updated at 16/09/2024, 15:09

https://arxiv.org/abs/2110.00201v2
https://doi.org/10.3182/20110828-6-IT-1002.00686
https://www.sciencedirect.com/science/article/pii/S1474667016437985
https://www.sciencedirect.com/science/article/pii/S1474667016437985
http://ieeexplore.ieee.org/abstract/document/5530979/
http://ieeexplore.ieee.org/abstract/document/5530979/
http://www.sciencedirect.com/science/article/pii/S0005109806003074


Student research proposals REPLAN

Robot Operating System 2
Idea
Robot Operating System 2 (ROS 2) is a cutting-edge framework designed for building robot applica-
tions, providing tools and libraries to aid in the development and deployment of robotic systems [1,
2, 3]. It emphasizes real-time performance, security, and improved communication.

The framework uses Data Distribution Service (DDS) for its communication layer, offering better
support for distributed systems, making it ideal for complex, networked robotic applications. ROS 2
also ensures cross-platform compatibility, enabling developers to work on various operating systems,
including Windows, Linux, and macOS, thus broadening its usability in diverse environments.

The capabilities cover essential tools for robot simulation, visualization, and control:
• Gazebo is a powerful simulation tool integrated with ROS 2, allowing users to create accurate

and realistic models of robotic systems and their environments. This integration facilitates the
testing and development of robots in a virtual space, significantly reducing the need for physical
prototypes.

• RViz, another crucial component, is a visualization tool that helps developers to see the data
from their robots in real-time. This includes sensor data, robot state information, and the
environment, aiding in debugging and fine-tuning robotic operations.

• Furthermore, teleop tools in ROS 2 enable remote operation of robots, allowing developers to
control their systems from a distance, which is particularly useful for field robots or those in
inaccessible areas.

Figure 1: Illustration of ROS2 architecture [1]

Objectives
There are multiple objectives that may be solved together or in parallel:

O1) Design and document a ROS2 implementation [practică/licență]

• check existing ROS and ROS2 implementations for useful materials (e.g., RotorS from ETH,
The Construct or CrazySwarm)

• construct a “barebones” architecture based on ROS2 and save it as a Docker file

Theory Implementation Tools

Python/C++

1 out of 2 last updated at 16/09/2024, 15:09

https://github.com/ethz-asl/rotors_simulator
https://www.theconstruct.ai/
https://crazyswarm.readthedocs.io/en/latest/


Student research proposals REPLAN

O2) Design and document worlds for simulation in Gazebo [practică/licență]

• gather worlds that can be loaded for simulation from various existing projects

• construct worlds programmatically (Python/Matlab script to add various simple primitive
into a predefined space)

• check tools for constructing worlds from Google Maps data (make a virtual landscape/city)

Theory Implementation Tools

Python/C++

O3) Design and document models for simulation in Gazebo [practică/licență]

• gather models that can be loaded for simulation from various existing projects (TurtleBot,
various drones)

• understand and modify the associated URDF files

• add functionalities to standard models (how to add a disturbance, a fault event or uncertain
dynamics)

Theory Implementation Tools

Python/C++

O4) A lot of effort in Crazyflie and ROS2 (see https://www.bitcraze.io/tag/ros2/), let’s check
what happens and what we can adapt/use! [practică/licență]

Theory Implementation Tools

Python/C++

People

• Florin Stoican • Bogdan Gheorghe • Daniel Ioan

Relevant references
[1] ROS2. Tutorials for the Jazzy version of ROS2. 2024. url: https://docs.ros.org/en/jazzy/

Tutorials.html.
[2] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. “Robot operating system 2:

Design, architecture, and uses in the wild”. In: Science robotics 7.66 (2022), eabm6074.
[3] F. M. Rico. A concise introduction to robot programming with ROS2. Chapman and Hall/CRC,

2022.

2 out of 2 last updated at 16/09/2024, 15:09

https://www.bitcraze.io/tag/ros2/
https://docs.ros.org/en/jazzy/Tutorials.html
https://docs.ros.org/en/jazzy/Tutorials.html

	anm0: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


